

BALJINDER KAUR CLASSES

(IISER PROFESSOR)

MATHS

Class 12 - Mathematics

Time Allowed: 1 hour

Maximum Marks: 30

[2]

1.	If $y = \sqrt{x} + \frac{1}{\sqrt{x}}$, show that $2x\frac{dy}{dx} + y = 2\sqrt{x}$.	[2]
2.	Differentiate $(ax^2 + bx + c)^6$ w.r.t. x.	[2]
3.	Find the derivative of the function given by $f(x) = \sin(x^2)$.	[2]

4. Find $\frac{dy}{dx}$, when: $x^2 + y^2 = 4$. [2]

5. Differentiate the function with respect to x:
$$\cos^{-1}\left\{\frac{x}{\sqrt{x^2+a^2}}\right\}$$

6. Differentiate the function with respect to x: $\tan^{-1}\left(\frac{1+\cos x}{\sin x}\right)$. [3]

7. If
$$y = \log \sqrt{\frac{1+\tan x}{1-\tan x}}$$
, prove that $\frac{dy}{dx} = \sec 2x$. [3]

8. If y log x = (x - y), prove that
$$\frac{dy}{dx} = \frac{\log x}{(1 + \log x)^2}$$
. [3]

- 9. Differentiate the function with respect to x: $x^{\sin^{-1}x}$ [2]
- 10. Differentiate the function with respect to x: $(\tan x)^{1/x}$

11. If y = 2sin x + 3cos x, show that
$$\frac{d^2y}{dx^2} + y = 0$$
 [3]

12. If y = sin (sin x), prove that
$$\frac{d^2y}{dx^2} + \tan x \frac{dy}{dx} + y \cos^2 x = 0$$
 [3]